3.413 \(\int \frac {1}{\sqrt {a+b x^3}} \, dx\)

Optimal. Leaf size=207 \[ \frac {2 \sqrt {2+\sqrt {3}} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} F\left (\sin ^{-1}\left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \]

[Out]

2/3*(a^(1/3)+b^(1/3)*x)*EllipticF((b^(1/3)*x+a^(1/3)*(1-3^(1/2)))/(b^(1/3)*x+a^(1/3)*(1+3^(1/2))),I*3^(1/2)+2*
I)*(1/2*6^(1/2)+1/2*2^(1/2))*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/(b^(1/3)*x+a^(1/3)*(1+3^(1/2)))^2)^(1/2)
*3^(3/4)/b^(1/3)/(b*x^3+a)^(1/2)/(a^(1/3)*(a^(1/3)+b^(1/3)*x)/(b^(1/3)*x+a^(1/3)*(1+3^(1/2)))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 207, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {218} \[ \frac {2 \sqrt {2+\sqrt {3}} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} F\left (\sin ^{-1}\left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[a + b*x^3],x]

[Out]

(2*Sqrt[2 + Sqrt[3]]*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(
1/3) + b^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)]
, -7 - 4*Sqrt[3]])/(3^(1/4)*b^(1/3)*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2
]*Sqrt[a + b*x^3])

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {a+b x^3}} \, dx &=\frac {2 \sqrt {2+\sqrt {3}} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} F\left (\sin ^{-1}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 46, normalized size = 0.22 \[ \frac {x \sqrt {\frac {b x^3}{a}+1} \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};-\frac {b x^3}{a}\right )}{\sqrt {a+b x^3}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[a + b*x^3],x]

[Out]

(x*Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[1/3, 1/2, 4/3, -((b*x^3)/a)])/Sqrt[a + b*x^3]

________________________________________________________________________________________

fricas [F]  time = 0.91, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {1}{\sqrt {b x^{3} + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^3+a)^(1/2),x, algorithm="fricas")

[Out]

integral(1/sqrt(b*x^3 + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {b x^{3} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^3+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/sqrt(b*x^3 + a), x)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 283, normalized size = 1.37 \[ -\frac {2 i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \EllipticF \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{\left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) b}}\right )}{3 \sqrt {b \,x^{3}+a}\, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x^3+a)^(1/2),x)

[Out]

-2/3*I*3^(1/2)*(-a*b^2)^(1/3)/b*(I*(x+1/2*(-a*b^2)^(1/3)/b-1/2*I*3^(1/2)*(-a*b^2)^(1/3)/b)*3^(1/2)/(-a*b^2)^(1
/3)*b)^(1/2)*((x-(-a*b^2)^(1/3)/b)/(-3/2*(-a*b^2)^(1/3)/b+1/2*I*3^(1/2)*(-a*b^2)^(1/3)/b))^(1/2)*(-I*(x+1/2*(-
a*b^2)^(1/3)/b+1/2*I*3^(1/2)*(-a*b^2)^(1/3)/b)*3^(1/2)/(-a*b^2)^(1/3)*b)^(1/2)/(b*x^3+a)^(1/2)*EllipticF(1/3*3
^(1/2)*(I*(x+1/2*(-a*b^2)^(1/3)/b-1/2*I*3^(1/2)*(-a*b^2)^(1/3)/b)*3^(1/2)/(-a*b^2)^(1/3)*b)^(1/2),(I*3^(1/2)*(
-a*b^2)^(1/3)/(-3/2*(-a*b^2)^(1/3)/b+1/2*I*3^(1/2)*(-a*b^2)^(1/3)/b)/b)^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {b x^{3} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^3+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt(b*x^3 + a), x)

________________________________________________________________________________________

mupad [B]  time = 1.02, size = 37, normalized size = 0.18 \[ \frac {x\,\sqrt {\frac {b\,x^3}{a}+1}\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{3},\frac {1}{2};\ \frac {4}{3};\ -\frac {b\,x^3}{a}\right )}{\sqrt {b\,x^3+a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + b*x^3)^(1/2),x)

[Out]

(x*((b*x^3)/a + 1)^(1/2)*hypergeom([1/3, 1/2], 4/3, -(b*x^3)/a))/(a + b*x^3)^(1/2)

________________________________________________________________________________________

sympy [A]  time = 1.64, size = 36, normalized size = 0.17 \[ \frac {x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 \sqrt {a} \Gamma \left (\frac {4}{3}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x**3+a)**(1/2),x)

[Out]

x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), b*x**3*exp_polar(I*pi)/a)/(3*sqrt(a)*gamma(4/3))

________________________________________________________________________________________